How AI and Machine Learning Will Shape the Future of SEO

Since the inception of Search Engine Optimisation (SEO), it has been going through various transformations. It is evident that Artificial Intelligence (AI) and machine learning is going to change SEO soon.

AI is a system which is constantly evolving and changing. Nowadays, SEO prioritizes more on content, links and user experiences.

Machine learning

It is a form of artificial intelligence. Machine learning gives the opportunity to computers to learn without being programmed.

That means software programs will be able to change and grow accordingly when exposed to new data. This will make computers more adaptable to new data.

Machine learning is not a new concept. Even in 1990s, basic machine learning algorithms existed but with minimal usage of applying it.

From recently only, Google started making use of it in its searches and we started seeing rapid changes whenever there are new major updates.

RankBrain

RankBrain is Google’s new game changing algorithm introduced in conjunction with Hummingbird. It was introduced to help in identifying and interpreting the intent of the content and showing result pages which don’t include the words users searched for; but contains information related to the category or idea of the query.

RankBrain is designed in such a way to continuously determine and integrate new features on its own. Even though, you may not have noticed any major changes in searching; RankBrain is definitely doing an outstanding job.

On the billions of searches Google process everyday, 15% of those enquiries had never been processed before. From 2016, Google uses RankBrain to process each of them; where its resources are used to learn how to investigate all kind of queries including the rare ones.

To analyze how AI and machine learning will shape the future of SEO, we need to study about the history and current scenarios of SEO. Let’s take a look at those:

How SEO evolved?

When SEO started, it was very easy to rank top in a search engine as the results were based on keywords used. If you wanted a top position in search results, all you needed to do was use the phrase suitable for your title and the content and you are done! You were guaranteed one of the top most positions in search results.

The basic idea was that the number of times the keyword used was more on your page; your ranking will be higher.

But this also paved ways for some unethical search engine optimisation practices by various companies such as hiding keywords in the background of websites or putting keywords off screen.

Different types of tactics were developed for ranking high on search engine which led Google to change the algorithms used.

As Google had enough with the unethical SEO practices, Penguin 1.0 was introduced by Google on April 2012. It was developed to block various web spam tacticssuch as duplicate contents, stuffing of keywords, link schemes and also unwanted redirects.

Based on Google’s quality guidelines, Penguin decreased those sites’ ranking where it felt has violated the guidelines.

Current scenario of SEO

Various algorithms used by Google have helped a lot in kicking out spam filled sites. Also this scenario forced marketers to create high quality contents to get into search results.

In the past, if the SEO techniques were based on keywords; at present, it’s based on technical SEO, link building and speed of the page.

In the past, technical SEO only makes sure whether you use suitable keyword, but now it also focuses more on creating greater user experiences.

Now it includes various factors such as user behaviour, page speed and responsiveness of mobile pages.

Now Google focuses more on quality content rather than keyword stuffed contents. Engaging on high quality content will always decrease the ranking of low quality content even if it has high keyword density.

Future of SEO

The future of SEO will mostly rely on artificial intelligence rather than relying on a formula to create organic search result listing.

AI will be relying on machine learning, big data and user experience. Using AI and machine learning, search engines can learn from user behaviours and will be able to provide a list of contents users will most likely search for.

The following are the trends that are more likely to shape the future of SEO:

In 2015, Google has introduced RankBrain into its search algorithm. As said before, it has made keyword phrases irrelevant.

RankBrain is the third most important ranking factor in their search algorithms.

  • Understanding user intent

It will play an important part in ranking as major part of search results are based on artificial intelligence. Now, when marketers are thinking of creating content for their website, they need to think more than just keywords to hit the ranking on the search engine results page.

They also need to think what users will hope to find on your web page when they click from the results on search engines.

Marketers should be vigilant to get clues from search intent from their queries. There are four types of queries based on the user intent:

  • Navigational: A user looking for a specific information on a specific website
  • Informational: A user trying to get some information to read
  • Transactional: User trying to pay a bill, creating a new account or even trying to subscribe newsletters
  • Commercial: A user wishes to purchase or trying to get information to purchase later
  • Schema Markups

It is code or semantic vocabulary that you create on your webpage which helps the search engines to have a better understanding of your content.

This in turn enables search engines to give informative and accurate results for the users. It looks like Google will be making use of new schema markup supports for carousels, data feeds, job listings etc.

Impact of AI and machine learning in the future of SEO

Emergence of machine learning and artificial intelligence will definitely bright up the future of search engine optimization. In favour of SEO, AI not only delivers useful content to users but also makes sure of what fits to user’s need.

Rather than sending users to a page that has more likely content, machine learning AI system will send users to the page that not only answer their initial queries but also can answer follow up queries.

It is very evident that AI and machine learning are definitely going to revolutionize SEO in delivering a greater user experience.

So don’t even think of compromising the quality of content on your website because no one wants to get listed last on the search engine ranking.

If you are not sure in creating content that will hit the top rankings in SEO, you can definitely outsource them. Our team is happy to help you with. Learn more about our products and services.

How AI Can Improve Your PPC Campaigns

If you have ever invested in Pay Per Click or PPC advertising in Google or Facebook, you know that it can take up lot of your time and concentration. Setting up big budget ad campaigns and continuous monitoring of performance and budget is a full time job in itself.

As you may know, many of repetitive tasks can now be done by machines without any human intervention. Marker’s tasks such as email sending, impression counting and conversion tracking have all been automated in the recent past. This is also true for PPC campaigns. Machine learning and artificial intelligence are already monitoring and fine-tuning paid ads.

In this blog we will discuss how AI is improving PPC campaigns and also look at what the future of PPC campaigns look like.

How can AI Improve your PPC Campaigns?

  • Dynamic ads

Marketers put in a lot of effort in writing the perfect ad copy for their target market. Wouldn’t it be great if the ad changed itself to suit the person viewing it? It’s not magic and many PPC platforms are already doing it.

Facebook Dynamic ads show different products to different users based on their interest and browsing history. Dynamic Search Ads in Google Adwords generates ads that match user search with the products available on your site. This means that you don’t have to worry about missing out keywords. Google uses AI to learn about your website and serves up exactly what users are searching.

  • Ad delivery Optimization

Delivery of your ad to the right people at the right time can make or break your PPC campaign. Facebook ad optimization shows your ad to the right people depending on your ad objective set. For example, if your objective is website traffic, Facebook will show your ad to people who are most likely to click on the link to your site.

facebook ad campaign screenshot

  • Automated Bidding

Wondering what bid would land you top spot in Google search? Set your campaign to automated bidding and let machine learning do the guesswork for you. Google automated bidding adjusts your bid to achieve any of the below objectives chosen by you:

  • Increase Site Visits
  • Top spot in Search Engine Results
  • More visibility over other domains
  • Get more conversions

This is free and convenient tool offered by Google. However, it does not meet the flexibility of manual bidding. Consider a case where you would want to apply automated bidding only to a high conversion keyword and not the rest. Automated bidding will not allow you this flexibility.

In such a case you can go for AdWords scripts or AdWords API. These features let you make automated changes in your AdWords account. This requires JavaScript coding knowledge to play around.  These features can be time-saving and very profitable if you have a tech-savvy team.

  • Discover audience

Application of AI doesn’t always have to be in the PPC platform. Applying AI and machine learning on user searches and customers converted can also give insights into management of your PPC campaign.

Consider the case of Arteric, which is into cutting edge technology for healthcare companies. Analysis of 250,000 searches for a pharmaceutical company revealed an unexpected opportunity in Spanish language search volume. AI is good at discovering new opportunities which a human would easily miss. In fact it is impossible for us to look for every permutation and combination of possibility. On the other hand, AI can easily skim through large amounts of data and pull out unexpected opportunities for your ads.

  • Uncover relevant keywords

AI can discover relevant keyword by the same method mentioned above. Data analysis of search terms reveals real-world conversational language in your industry. For example, analysis of search terms may reveal that people search for ‘ideas for Christmas Gifts’ instead of ‘buy Christmas Gifts’. This can help marketers in finding keywords with buyers’ intent and wasting money on non-performing keywords.

  • Pause low-performing ads

Not all ads in you campaign perform the same. Some ads get more conversion than others because of the keywords, ad copy and landing page. Pausing or deleting low performing ads not only saves ad money from being wasted, it also boost your ad quality score (Quality rating assigned by Google Adwords to your ad).

Monitoring ad performance to delete low performing ads is a repetitive and time consuming process. This can be automated by using Adwords Scripts and API integrations.

Future of PPC Campaigns

PPC campaigns are far from being fully automated. Some of the functions such as optimized display and bidding rules can be set with free automated tool. Others can be automated using Adwords API and Scripts. However most of the tasks require humans to make sense of the data and take decisions.

As technology progresses we will see machine learning take up more tasks. Who knows, we might soon see a time where you simply input your goal and budget and the Adwords AI takes care of the rest.

How AI-Based Tools are Transforming Social Media Marketing

From interpreting lab results in healthcare industry to automatically controlling air conditioning temperature, artificial intelligence is changing the face of industries and businesses.

It is also simplifying jobs of marketers by providing tools to make sense of consumer data on social media.

Social media gave marketers a powerful way to reach out to their target audience. However, application of AI has made it possible to reach out to each individual user with personalized content. Here is how AI based tools are transforming social media today:

Contact Jointviews

  • Chatbots

Artificially intelligent chatbots are common on social media. There are more than 1, 00,000 Facebook Messenger bots and they are here to stay as messaging is the preferred way of interaction for customers. Chatbots allow businesses to send auto-replies, personalized offers and even solve customer complaints.

More than 2 billion messages are exchanged between users and brands every month on Facebook messenger alone. Companies with AI powered Facebook messenger bots see increased user interaction and sales.

For example, Tommy Hillfiger saw a 3.5 times more conversion on messenger than any other digital channel during New York fashion week.

Even Twitter has launched many features this year to promote interaction of users with brand chatbots.

  • Image Recognition

People share more than 3.25 billion photos a day on popular social media platforms!  Brands can draw useful information about users, with so much visual data on social media.

Photos shared by followers can give marketers a peek into places they visit, products they use and how they interact with brands.

For example, an apparel brand can discover where their customers wear their products based on photos discovered on social media. Currently, there is no way to find out unless people tag the brand on a rare occasion.

A lot of information on buying behaviours, usage patterns and aspirational value can be found out by marketers only if they could read and discover images like text.

Thankfully AI is making this possible through image recognition technology. Using technologies like Google cloud vision companies can scan millions of images on social media to identify logos, products and objects.

This is similar to Facebook photos auto-tagging that you might be familiar with. With this AI tool marketers can listen to what customers are saying through pictures and videos.

  • Advertising

Paid campaigns give the best ROI in digital marketing. Managing campaigns on multiple channel and deciding on best bid for keywords can get difficult at times. Usually campaigns are managed by in-house team or a PPC agency.

AI Tools like Albert and Frank use machine learning to manage paid ad campaign, analyze result and suggest most profitable platform for placing ads. This takes the guess work out of paid campaigns and ensures best return on investment.

  • AI Content creation

Social media success is dependent on good content. According to Gartner, 20% of all business content will be authored by machines by 2018.

There are already intelligent programs that can write financial summaries and fact based articles. Many of the tech giants are working on bots that can speak and interact like human.

Microsoft’s artificially intelligent chatbot ‘Tay’  was made live on Twitter to learn from other users and tweet like a human teenage girl.

Although the controversial account had to be shut down after it tweeted inappropriate remarks, Tay showed us that days when bots produce social media content are not far.

As Natural Language Processing develops, machines will be able to write human like social media posts to engage followers. They would also collect real-time data on trending topics and write interesting content that drives engagement on social media. A tool called Rocco has already done this.

Rocco is an AI powered social media marketing assistant that suggests fresh social media content likely to drive engagement among your followers.

  • Customer Intelligence

Posts shared on social media platform can give useful information on customers. Marketers no more have to interrupt customers for surveys and conduct focus groups.

AI machines can search social media platforms for data that matters and collate actionable insights.

Converseon  is already doing this by applying machine learning to voice-of customer data.

These insights can be used for market segmentation, building customer profiles and competitive analysis.

AI based tools are going to change how we consume information on social media platforms. This is the reason all of the tech giants and social media companies are investing heavily in it.

Facebook has a dedicated AI research team called Facebook Artificial Intelligence Researchers (FAIR). In 2014 LinkedIn bought Bright, an AI based job search portal, to better its job matching capabilities.

Pinterest on the other hand acquired a data software company, Kosei, to boost pin and product recommendations. It is only a matter of time before marketers start using AI based tools widely on these sites.

How Artificial Intelligence is Transforming the Customer Experience in Ecommerce

Have you noticed the relevant product recommendations by Amazon or the interesting movie suggestions by Netflix ? This is not a coincidence but the work of Artificial Intelligence systems supporting ecommerce sites.

Artificial Intelligence or AI is being put to use by tech giants as well as by smaller players across all industries. AI application is changing everything from gaming experience to security systems.

Ecommerce is also undergoing transformation as AI is enriching customers’ experience while shopping online. In fact, a study by Business Insider estimated that as much as 85% of the customer interactions will be managed without a human by 2020.

This is made possible because of the big data collected on customers from various sources. Combining high processing capability and machine learning by computers allows AI to learn about customers and give a human touch to shopping online. AI can take on the roles of salesperson, inventory manager, marketing and store manager!

 Virtual Assistant

AI is bringing back the experience of a salesperson helping you out in a brick and mortar store. Human like virtual assistant can recommend products based on your past purchases and your customer profile. A detailed database gathered about each user allows assistants to give hyper personalized experience.

Virtual assistants can also suggest on the right clothing based on your location, weather or suggest a suitable phone according to your day–to-day usage. For example, a virtual assistant may help you to choose the right type of boot for your dress.

This is done by searching the web for information on fashion and boots. The assistant visits fashion blogs, looks at Pinterest images and gathers data on similar shoppers to suggest the best pair of boots. Your assistant will continuously learn about you and your interest to come up with relevant product recommendations.

Companies are also working on voice recognizing assistants that can have a conversation with shoppers. Soon it would be possible to tell your personal AI powered assistant what you want rather than searching for the right keyword for your product. Natural language programming enabled AI systems will be intuitive and understand the context of interaction like a human.

Personalized Store

Ecommerce stores have had to choose their layout, branding and product assortment that would appeal to their target until now. This will soon change as machines learn about you to give you a personalized store altogether.

People of different countries may prefer a different layout and feel of the store. Similarly, different age demographics may have different expectation from ecommerce sites. Baby boomers may be more likely to buy a product bought by their friends whereas millennials may prefer to wait until prices drop.

AI allows online stores to change their layout, offers, and branding to fit the customer. This is done by customizing smart banners, smart pages and smart elements that adapt to the customer visiting your site. This is like walking into a store custom built for you.

Fight Counterfeits

Artificial Intelligence will also help to identify counterfeit and duplicate products.  Chicago based start-up 3PM Marketplace Solution is working on an algorithm that identifies counterfeit products. The algorithm uses pointers such as fake reviews, customer reviews and data from other marketplaces to spot a duplicate product.

Removing deceiving third party sellers will build trust and credibility for sites using AI.

Intelligent Marketing

According to Conversica, one third of the leads are never followed up with. AI can reduce missed leads by automating follow up messages and remarketing to visitors who browsed for considerable amount of time.

AI can be used for pre-sales marketing too. This is already done by many sites by remarketing the products that a customer abandoned in shopping cart. AI can target a customer who visited and follow them in all social media channels to show the exact same ad. For example, searching for mobile phones will trigger the AI powered remarketing to show your smartphone advertisements on all social media channels and display ads.

Using machines to learn and improve also allows a lot of marketing work to be automated. Companies are currently automating marketing tasks such as mailing, lead conversion and answering objections of prospects.

 Store Operations

AI is also helping at the back end of ecommerce stores. The usual business intelligence systems fall short in inventory management and assortment management in today’s dynamic marketplace. AI can forecast demand trends based on predictive analysis in these cases.

Many factors such as competitors pricing, velocity of orders, supply and demand, seasonal popularity affect the demand of a product. By using AI to estimate stock required the store can avoid being out of stock or over-stoking on products that won’t sell in future.

 After Sales Service

The role of marketing does not end at sale. After-sales service is important to get repeat business. AI is helping personalize after-sales service by automated feedback forms, timely mailers and renewal/replacement alerts.

Some brands are even connecting to intelligent appliances and send service alerts or fix problems remotely. For example, AI powered service system at Bosch can detect service issues with its dryers and washers and notify customers.

Being in continuous contact with customers ensure share of mind and brand loyalty.

AI enabled ecommerce sites are able to process data that is impossible for a human to comprehend. This gives the opportunity to gather data on the bigger picture for strategic decisions and yet act on a granular level to give a personalized experience to customers. AI is changing how customers browse, shop and experience ecommerce for the better.